
API user guide
for CPS 3600 family

Introduction

This document describes the application programming interface (API) for the CPS 3600 family of power 
supplies. The API is compatible with all products in the 3600 family. It allows a single computer to monitor 
and control up to 16 systems of identical or mixed product types.

Distribution

The API consists of the following files, which are included in the Windows software development kit (SDK) 
for the CPS 3600 family, available at cpshv.com:

• c3600.dll – API executable. This must reside in the same directory as the application program (or 
in the DLL search path). Note that this is a 32-bit library, which means it can be used on both 32- 
and 64-bit machines, but only with 32-bit applications.

• c3600.lib – Library file for the API. This is used when building an application, to link the 
application to the DLL.

• c3600.h – C/C++ header. Include this in C/C++ source files that call API functions.

• c3600.vb – VB.NET module. Include this in VB.NET projects that call API functions.

Terminology

The API views each product in the 3600 family as a system of devices in which:

• A system is a collection of one or more devices
in a common enclosure, with system-level
connectors for input power and communication.

• A device is an embedded single-output power
supply with associated setpoint and meters.

For example, the system shown to the right has three
devices: a high-voltage accelerator supply, a filament
current source, and a bias voltage generator.

Hardware addresses

Every device in a system, and the system itself, is an addressable resource. API functions use these 
arguments to address a particular resource:

• sysid – system ID in range 0 to 15.

• devtype – enumerated device type (e.g., DEVTYPE_ACCELERATOR).

• devindex – device index.

A system is addressed by its sysid alone, whereas a device is addressed by its sysid, devtype, and 
devindex. These arguments are explained in detail below.

CPS 3600 API 1 02/18/2022

system

device

device

device

Accelerator

Filament

Bias

COM

Power in

http://cpshv.com/


System ID (sysid)

The API allows a computer to communicate with up to 16 systems. To facilitate this, a unique system ID in 
the range 0 to 15 is assigned to each system. The application software assigns an ID to a system by calling 
C3600_OpenSystem().

Device type (devtype)

Every device has a factory-assigned, enumerated type which is based on its output characteristics and 
intended purpose:
typedef enum DEVTYPE {          // DEVICE TYPES ---
    DEVTYPE_UNIMPLEMENTED = 0,  //  No device available 
    DEVTYPE_UNKNOWN       = 1,  //  Invalid device type
    DEVTYPE_ACCELERATOR   = 2,  //  Accelerator
    DEVTYPE_BIAS          = 3,  //  Bias
    DEVTYPE_EXTRACTOR     = 4,  //  Extractor
    DEVTYPE_FILAMENT      = 5,  //  Filament
    DEVTYPE_LENS          = 6,  //  Lens
    DEVTYPE_SUPPRESSOR    = 7   //  Suppressor
} DEVTYPE;

Device index (devindex)

The API automatically assigns an index to each device based on its device type. Application software uses 
the device index to address a particular device.

In general, for any given device type T, the first type T device in a
system is assigned index 0. If a system has multiple type T
devices, those devices are assigned sequential index numbers
starting at 0.

For example, the system shown to the right has two
devices of type DEVTYPE_ACCELERATOR, which are
assigned index 0 and 1. Similarly, the two filament
supplies (type DEVTYPE_FILAMENT) are assigned index 0 and 1. The
system has a single DEVTYPE_BIAS  device, which is assigned index 0.

Communication timeouts (maxwait)
Many API functions send commands to a system and expect to receive replies. If, due to communication 
error or equipment failure, an expected reply fails to arrive, the application program could hang. To prevent 
this, the API functions provides a maxwait argument.

maxwait specifies the maximum time the application is willing to wait for a system reply. If a reply is not 
received within maxwait milliseconds, the function will terminate and return C3600_ERR_READ_TIMEOUT.

The code examples in this document set maxwait to 1000 ms, which in most cases will be long enough to 
guarantee no timeouts during normal operation.

Error codes
Most of the API functions return an error code. Error code C3600_ERR_OK (zero) is returned if no errors are 
detected; all other error codes are negative values. See c3600.h or c3600.vb for a complete list of error 
codes.

Thread safety

Except where otherwise noted, all API functions are thread safe.

CPS 3600 API 2 02/18/2022

system

device

device

device

Accelerator 0

Filament 0

Filament 1

COM

Power in
device Accelerator 1

device Bias 0



API functions

C3600_GetErrorString()

Prototype

const char * C3600_GetErrorString(int errcode);

Arguments

errcode – any API error code.

Return value

Pointer to a plaintext string that describes errcode.

Description

This function maps an API error code to an associated descriptive string.

Example

int errcode = C3600_ApiClose();
if (errcode != C3600_ERR_OK)
  printf("C3600_ApiClose() error: %s\n", C3600_GetErrorString(errcode));

C3600_ApiOpen()

Prototype

int C3600_ApiOpen(int *version);

Arguments

version – buffer that will receive API version number.

Return value

API error code.

Description

This must be the first API function called by the application program. It allocates and initializes API 
resources and copies the API version number to version. This function is not thread safe.

Example

inv ver, errcode = C3600_ApiOpen(&version);
if (errcode != C3600_ERR_OK)
  printf("ERROR! Problem opening 3600 API, errcode = %d.\n", errcode);
else
  printf("API version = %d.%d.%d\n", ver >> 24, (ver >> 16) & 0xFF, ver & 0xFFFF);

C3600_ApiClose()

Prototype

int C3600_ApiClose(void);

Arguments

none

Return value

API error code.

Description

This must be the last API function called by the application program. It closes the API and frees all API 

CPS 3600 API 3 02/18/2022



resources. This function is not thread safe.

C3600_OpenSystem()

Prototype

int C3600_OpenSystem(int sysid, int port, int maxwait);

Arguments

sysid – system ID in range 0 to 15.

port – serial port index.

maxwait – maximum milliseconds to wait for system to reply.

Return value

API error code.

Description

This function must be called once for each system. It gathers information about the system, enumerates 
devices, and enables subsequent communication with the system. This function is not thread safe.

port specifies the index of the serial port (on the host computer) used to communicate with the system. USB
compatible systems use virtual serial ports, whereas other systems use RS-232 serial ports. In either case, the
index of a serial port is the COM number minus one. For example, when using COM1, set port = 0.

Some USB systems require multiple virtual serial ports. In such cases, the computer must use a contiguous 
sequence of COM numbers for each system, with port indicating the lowest serial port index in the 
sequence. For example, in the case of a four-port system that uses COM20 to COM23, set port = 19 (port 
index of COM20).

C3600_CloseSystem()

Prototype

int C3600_CloseSystem(int sysid);

Arguments

sysid – system ID in range 0 to 15.

Return value

API error code.

Description

This function closes a system. After calling this, further communication with the system (and its devices) is 
prohibited. This function is not thread safe.

C3600_GetSysInfo()

Prototype

int C3600_GetSysInfo(int sysid, SYS_INFO *info, int maxwait);

Arguments

sysid – system ID in range 0 to 15.

info – buffer that will receive system info.

maxwait – maximum milliseconds to wait for system reply.

Return value

API error code.

CPS 3600 API 4 02/18/2022



Description

This function transfers system attributes to the info buffer.

Example

SYS_INFO info;
int errcode = C3600_GetSysInfo(0, &info, 1000);
if (errcode == C3600_ERR_OK)
  printf("CPS model number = %s\n", info.model);

C3600_GetDevInfo()

Prototype

int C3600_GetDevInfo(int sysid, DEVTYPE devtype, int devindex, DEV_INFO *info, int maxwait);

Arguments

sysid – system ID in range 0 to 15.

devtype – enumerated device type.

devindex – device index.

info – buffer that will receive device info.

maxwait – maximum milliseconds to wait for system reply.

Return value

API error code.

Description

This function copies a device's attributes to the info buffer. See the header file for a description of the 
DEV_INFO structure.

Example

// Show voltage and current ranges for an accelerator power supply 
DEV_INFO info;
int devindex = 0;  // select first accelerator supply in system
int errcode = C3600_GetDevInfo(0, DEVTYPE_ACCELERATOR, devindex, &info, 1000);
if (errcode != C3600_ERR_OK)
  printf("C3600_GetDevInfo() error: %s\n", C3600_GetErrorString(errcode));
else if (!info.is_detected)
  printf("system doesn't have an accelerator supply\n");
else if (!info.is_valid)
  printf("warning: corrupt device attributes\n");
else {
  printf("normal operating ranges for accelerator power supply:\n");
  printf("voltage: %d to %d V\n", info.range[0].min, info.range[0].max);
  printf("current: %d to %d A\n", info.range[1].min, info.range[1].max);
}

C3600_GetFaultFlags()

Prototype

int C3600_GetFaultFlags(int sysid, DEVTYPE devtype, int devindex, int *flags, int maxwait);

Arguments

sysid – system ID in range 0 to 15.

devtype – enumerated device type.

devindex – device index.

flags – buffer that will receive fault flags.

maxwait – maximum milliseconds to wait for system reply.

CPS 3600 API 5 02/18/2022



Return value

API error code.

Description

This function reads fault information from a device. See the header file for a list of fault flags.

Example

// Check for faults on a filament supply
int flags;
int errcode = C3600_GetFaultFlags(0, DEVTYPE_FILAMENT, 0, &flags, 1000);
if (errcode == C3600_ERR_OK)
  if (flags != 0)
    printf("WARNING! Faults detected on filament supply.\n");

C3600_GetStatusFlags()

Prototype

int C3600_GetStatusFlags(int sysid, DEVTYPE devtype, int devindex, int *flags, int maxwait);

Arguments

sysid – system ID in range 0 to 15.

devtype – enumerated device type.

devindex – device index.

flags – buffer that will receive status flags.

maxwait – maximum milliseconds to wait for system reply.

Return value

API error code.

Description

This function copies device status information to flags. See the header file for a list of status flags.

Example

// Report status of accelerator output enable
int flags;
int errcode = C3600_GetStatusFlags(0, DEVTYPE_ACCELERATOR, 0, &flags, 1000);
if (errcode == C3600_ERR_OK)
  if (flags & STATUS_OUTPUT_ENABLED)
    printf("HV output is enabled.\n");

C3600_SetOutput()

Prototype

int C3600_SetOutput(int sysid, DEVTYPE devtype, int devindex, double data, int enab, int maxwait);

Arguments

sysid – system ID in range 0 to 15.

devtype – enumerated device type.

devindex – device index.

data – setpoint value.

enab – output enable: 1 = enable; 0 = disable.

maxwait – maximum milliseconds to wait for system reply.

CPS 3600 API 6 02/18/2022



Return value

API error code.

Description

This function programs a device's output level and enables or disables the output.

data sets the desired output value. The measurement units depend on devtype: Amps are used for 
DEVTYPE_FILAMENT; Volts are used for all other device types.

enab controls the power supply output enable. Set this to 1 to enable the output, or 0 to disable the output.

Example

// Set anode voltage to 47.5 kV
int errcode = C3600_SetOutput(0, DEVTYPE_ACCELERATOR, 0, 47500, 1, 1000);
if (errcode == C3600_ERR_OK)
  printf("HV supply was enabled and set to 47.5 kV\n");

C3600_GetMeter()

Prototype

int C3600_GetMeter(int sysid, DEVTYPE devtype, int devindex, int meterid, double *data, int *raw, int maxwait);

Arguments

sysid – system ID in range 0 to 15.

devtype – enumerated device type.

devindex – device index.

meterid – enumerated meter type. Set to METER_V, METER_I or METER_T.

data – buffer that will receive calibrated meter data.

raw – buffer that will receive uncorrected meter data. Set to NULL if not needed.

maxwait – maximum milliseconds to wait for system reply.

Return value

API error code.

Description

This function reads meter data from a device. 

meterid specifies the type of meter to read. Set this to METER_V, METER_I or METER_T to read the 
measured output voltage, output current, or temperature.

When this function returns, the calibration-corrected meter data will be stored in data. Measurement units 
depend on meterid; the units for meter types METER_V, METER_I and METER_T are Volts, Amps and 
degrees C, respectively. Uncorrected meter data is returned in raw; set to NULL if this is not needed.

Example

// Measure anode voltage and beam current at output of accelerator power supply
double anodeV, beamI;
int devindex = 0;  // select first accelerator supply
int errcode = C3600_GetMeter(0, DEVTYPE_ACCELERATOR, devindex, METER_V, &anodeV, NULL, 1000);
if (errcode == C3600_ERR_OK) {
  errcode = C3600_GetMeter(0, DEVTYPE_ACCELERATOR, devindex, METER_I, &beamI, NULL, 1000);
  if (errcode == C3600_ERR_OK) {
    printf("anode voltage = %d V\n", (int)anodeV);
    printf("beam current = %d uA\n", (int)(beamI * 1000000));
  }
}

CPS 3600 API 7 02/18/2022



C3600_GetOutput()

Prototype

int C3600_GetOutput(int sysid, DEVTYPE devtype, int devindex, double *data, int *raw, int *enab, int maxwait);

Arguments

sysid – system ID in range 0 to 15.

devtype – enumerated device type.

devindex – device index.

data – buffer that will receive calibrated setpoint value. Set to NULL if not needed.

raw – buffer that will receive uncorrected setpoint value. Set to NULL if not needed.

enab – buffer that will receive output enable status: 1 = enabled; 0 = disabled.

maxwait – maximum milliseconds to wait for system reply.

Return value

API error code.

Description

This function reads the programmed setpoint and output enable from a device. When this function returns, 
the setpoint will be stored in data and the output enable will be stored in enab.

In normal operation, data will match the most recently programmed setpoint value. The measurement units 
depend on devtype: Amps are used for DEVTYPE_FILAMENT; Volts are used for all other device types. Note
that the programmed setpoint is automatically zeroed when the device is reset; such resets may be expected 
(e.g., upon system boot or reset command) or unexpected (e.g., due to device watchdog timeout).

Similarly, in normal operation, enab will equal the most recently programmed value, or zero if the device 
has been reset since the output enable was last programmed.

The uncorrected setpoint is returned in raw; set to NULL if this is not needed.

Example

// Display programmed settings on a filament power supply
double data;
int enab;
int errcode = C3600_GetOutput(0, DEVTYPE_FILAMENT, 0, &data, NULL, &enab, 1000);
if (errcode == C3600_ERR_OK) {
  printf("programmed settings on filament supply: ");
  printf("setpoint = %d mA, ", (int)(data * 1000));
  printf("output %s\n", enab ? "enabled" : "disabled");
}

C3600_SysReset()

Prototype

int C3600_SysReset(int sysid, int hard, int maxwait);

Arguments

sysid – system ID in range 0 to 15.

hard –  reset type: 1 = hard reset; 0 = soft reset.

maxwait – maximum milliseconds to wait for system reply.

Return value

API error code.

CPS 3600 API 8 02/18/2022



Description

This function invokes a system reset.

A system may become unresponsive due to arcing or other electrical disruptions, or as a result of application 
program errors. In such cases, this function can be used to restore normal operation.

If this function completes normally then all devices in the system were successfully reset (outputs disabled, 
setpoints zeroed) and normal operation can resume. If the function times out then it may be necessary to 
cycle system power to restore normal operation. For other types of errors, it is recommended to retry this 
function before resorting to power cycling.

hard specifies the method used to invoke the reset. It is recommended to set hard = 1.

In multi-threaded applications, the calling thread should notify other threads that the system has been reset.

Example

switch (C3600_SysReset(0, 1, 3000)) {  // allow 3 seconds – enough time for more complex systems
  case C3600_ERR_OK:
    printf("system reset successful\n");
    // todo: notify other threads that the system was reset
  case C2600_ERR_READ_TIMEOUT:
    printf("system reset failed; try power cycling the system\n");
  default:
    printf("system reset failed; try calling C3600_SysReset() again\n");
}

CPS 3600 API 9 02/18/2022


	Introduction
	Distribution

	Terminology
	Hardware addresses
	System ID (sysid)
	Device type (devtype)
	Device index (devindex)

	Communication timeouts (maxwait)
	Error codes
	Thread safety
	API functions

