
CPS model BP2595 bipolar power supply
API user guide

 Introduction

This document describes the application program interface (API) for the BP2595 bipolar power supply. The API allows
application software to monitor and control up to eight model BP2595 power supplies over USB. The API is distributed as
part of a free software development kit (SDK).

Windows SDK

The Windows SDK includes the following files:

• BP2595.dll – API executable. This must reside in the same directory as your application program (or in the DLL
search path). This is a 32-bit DLL, which means it can be used on both 32- and 64-bit machines, but only with 32-
bit applications.

• BP2595.lib – Linker library for BP2595.dll. This is used when building your application, to link the application
to the DLL.

• apiBP2595.h – C/C++ header. This must be included in all C/C++ source files that call API functions.

• bp2595.vb – VB.NET module. This must be included in all VB.NET projects that call API functions.

• Source code, project files, and pre-built executables of C and VB.NET applications that show how to use the API.

 Overview

Terminology

The following terms are used throughout this document:

• A device is a BP2595 unit.

• A meter is circuitry within a device that measures voltage, current or temperature.

• A supply is circuitry within a device that generates the HV output.

• A setpoint is the programmed output voltage of a supply. Note that this is the desired output level, which may not
match the associated meter due to output loading or other reasons.

• HVEN is the programmed output enable of a supply. High voltage may be generated when HVEN is enabled, and
will not be generated when HVEN is disabled.

• A client is a computer which connects to a device via USB.

• A console is the operator controls on a device front panel.

• The mode determines the entity that controls the supply: console (local mode) vs. client (remote mode). The mode
is selected via a console switch.

Data types
These fundamental data types are used in API function arguments:

• u8 – unsigned 8-bit integer

• u16 – unsigned 16-bit integer

• s32, int – signed 32-bit integer

1

Error codes

Most API functions return an error code. BP2595_ERR_OK (zero) is returned if no errors are detected; all other codes
indicate the function failed. See the header file (apiBP2595.h or bp2595.vb) for a list of error codes.

Device address

Most API functions communicate with a particular device and thus include a devaddr argument to designate the device.
The device address is an integer value between 0 and 7, corresponding to the device's USB address switch position. When
calling an API function, the devaddr value must match the target device's switch setting. By default, devices are factory-
programmed to address 0.

 Admin functions

BP2595_OpenApi

int BP2595_OpenApi(int *devflags);

Arguments

devflags – buffer to receive bit flags indicating detected devices.

Description

This function opens the API and detects all devices. Each bit in devflags is associated with a particular device address. Bit
0 is associated with address 0, bit 1 with address 1, etc. A logic '1' bit indicates a device is detected at the associated address;
'0' indicates no device is detected. The application program must call this once before calling any other API functions. No
other API calls are permitted before calling this function.

Thread safety

This function is not thread safe.

Example

int addr, mask, devflags;
int errcode = BP2595_OpenApi(&devflags);
if (errcode == BP2595_ERR_OK) {
 if (devflags == 0)
 printf("no devices detected\n");
 else {
 printf("detected the following devices:\n");
 for (addr = 0, mask = 1; addr < 8; addr++, mask <<= 1) {
 if (devflags & mask)
 printf("address %d\n", addr);
 }
 }
}
else
 printf("ERROR! Problem opening API, error code = %d.\n", errcode);

BP2595_CloseApi

int BP2595_CloseApi(void);

Description

This function closes all open devices and frees all resources used by the API. It must be the called once before the
application program closes.

No API calls are permitted after calling this function (except BP2595_OpenApi, to re-open the API after closing it).
Consequently, multi-threaded applications must explicitly close all devices (via BP2595_CloseDevice) and wait for all
device-dependent threads to terminate before calling this function.

Thread safety

This function is not thread safe.

2

Example

int errcode = BP2595_CloseApi(); // Close the API.
if (errcode != BP2595_ERR_OK)
 printf("ERROR! Problem closing API, error code = %d.\n", errcode);

BP2595_OpenDevice

int BP2595_OpenDevice(int devaddr, BP2595_STATUS *status);

Arguments

devaddr – device address in the range 0 to 7.
status – buffer to receive device status.

Description

This function opens a device and returns its current status information in status. The application program must call this
function once for each device to enable communication with the device.

This function does not affect the device's control settings (setpoint, HVEN). The current control settings can be obtained
from the returned status.

Thread safety

Two or more threads can safely open mutually-exclusive devices at the same time (i.e., it is unsafe for two threads to
simultaneously open the same device).

Example

BP2595_STATUS status;
int errcode = BP2595_OpenDevice(0, &status); // Open device at address 0.
if (errcode != BP2595_ERR_OK)
 printf("ERROR! Problem opening system, error code = %d.\n", errcode);

BP2595_CloseDevice

int BP2595_CloseDevice(int devaddr);

Arguments

devaddr – device address in the range 0 to 7.

Description

This function closes a device. If an application thread is waiting in a blocking API function (BP2595_GetStatusUpdate or
BP2595_GetMeterUpdate) then the blocking function will unblock and return an error code indicating the device was
closed. The application must call this function when it has finished communicating with a device.

This function does not affect the device's control settings (setpoint, HVEN). Consequently, if the setpoint or HVEN are
required to be set to particular values (e.g., 0 kV, HV disabled) when the device is closed, the application must program
those values before calling this function.

Thread safety

Two or more threads can safely close mutually-exclusive devices at the same time (i.e., it is unsafe for two threads to
simultaneously close the same device).

Example

BP2595_CloseDevice(0); // Close device at address 0.

3

 Utility functions

BP2595_ErrString

const char * BP2595_ErrString(int errcode);

Arguments

errcode – error code returned by an API function.

Description

This function accepts an error code and returns a pointer to a text string that describes the error.

Thread safety

This function is thread safe.

Example

int errcode = BP2595_OpenDevice(0, &status); // Try to open device at address 0.
if (errcode != BP2595_ERR_OK) // If failed to open device
 printf("BP2595_OpenDevice error: %s\n", BP2595_ErrString(errcode)); // display error message.

BP2595_GetApiVersion

int BP2595_GetApiVersion(BP2595_VERSION *ver);

Arguments

ver – buffer to receive API version info.

Description

This function returns the API version number.

Thread safety

This function is thread safe.

Example: Display API version

BP2595_VERSION ver;
int errcode = BP2595_GetApiVersion(&ver);
if (errcode != BP2595_ERR_OK)
 printf("ERROR: %s\n", BP2595_ErrString(errcode));
else
 printf("api version = %d.%d.%d\n", ver.Major, ver.Minor, ver.Build);

BP2595_GetDeviceVersions

int BP2595_GetDeviceVersions(int devaddr, BP2595_VERSION_INFO *info);

Arguments

devaddr – device address in the range 0 to 7.
info – receives device version info.

Description

This function returns the firmware and hardware versions.

Thread safety

This function is thread safe.

4

Example: Display device versions

BP2595_VERSION_INFO info;
int errcode = BP2595_GetDeviceVersions(0, &info);
if (errcode != BP2595_ERR_OK)
 printf("ERROR: %s\n", BP2595_ErrString(errcode));
else {
 printf("firmware version %d.%d.%d\n", info.DevFw.Major, info.DevFw.Minor, info.DevFw.Build);
 printf("hardware rev %c\n", info.PwbRev);
}

 Status functions

Device status
Device status is conveyed in a BP2595_STATUS structure. The status information includes setpoint, HVEN, mode, and
various flags that indicate faults and logged events.

The client initially receives the current device status when it calls BP2595_OpenDevice. Once the device is open, it may
call BP2595_GetStatusUpdate to obtain device status and to be notified when a status change occurs.

Status updates

The device automatically transmits a status update message to the client upon any of these events:

• Setpoint value change.

• HVEN change.

• Mode change.

• Fault condition change.

The API automatically receives these update messages and keeps track of the current device status, and optionally will
notify the application when device status changes. This allows an application program to be structured for event-driven or
polled operation:

• In event-driven applications, a client thread can block (in BP2595_GetStatusUpdate) while waiting for a status
change and be automatically notified (unblocked) when a status change occurs.

• In polling applications, a client application can read the current status at any time without blocking.

BP2595_GetStatusUpdate

int BP2595_GetStatusUpdate(int devaddr, BP2595_STATUS *status, int tmax);

Arguments

devaddr – device address in the range 0 to 7.
status – buffer to receive status information.
tmax – maximum time (in milliseconds) to wait for a status report.

Description

This function receives notification of a device status change and returns the current device status. It blocks the calling thread
for up to tmax milliseconds while waiting to receive a status update. The received status information is returned in user-
allocated status buffer. The content of status will be changed only if the function executes normally (without error).

The returned status information includes Events flags that indicate which event(s) occurred. Event flags "accumulate"
until this function is called to read them. This ensures that events will not be lost if a new status update arrives before the
client reads the previous update.

The device maintains an internal log of fault events which act as permissives for various hardware functions. The returned
status information includes Log flags that indicate the logged events. Logged events must be cleared by calling
BP2595_ClearEventLog. This mechanism ensures that the client must acknowledge fault conditions (and presumably take
corrective action) before resuming normal hardware operation.

5

Blocking behavior is controlled by tmax. In all cases, the function will return immediately if a status update has already
been received. tmax may be set to any of these values:

• Zero. The function will execute normally if an update was received, otherwise it will return
BP2595_ERR_TIMEOUT.

• BP2595_INFINITE_WAIT. The function will block until an update is received and then execute normally. If another
thread closes the device while the function is blocking, the function will fail immediately and return
BP2595_ERR_DEVICE_CLOSED.

• A positive, non-zero time specified in milliseconds (e.g. 1500 = 1.5 seconds). The function will block until an
update is received or tmax milliseconds have elapsed. It will execute normally if an update is received, otherwise it
will fail and return BP2595_ERR_TIMEOUT. If another thread closes the device while the function is blocking, the
function will fail immediately and return BP2595_ERR_DEVICE_CLOSED.

Thread safety

This function is thread-safe, however multiple threads are not allowed to wait for status updates from the same device at the
same time. This function will fail and return BP2595_ERR_RESOURCE_BUSY if it is currently being executed by another
client thread for the same device.

Example: Event-driven operation

void StatusMonitorThread(int *devaddr)
{
 BP2595_STATUS status;
 while (BP2595_GetStatusUpdate(devaddr, &status, BP2595_INFINITE_WAIT) == BP2595_ERR_OK)
 DisplayStatusUpdate(&status);
}

Example: Polled operation

void PollStatus(int *devaddr)
{
 BP2595_STATUS status;
 int errcode = BP2595_GetStatusUpdate(devaddr, &status, 0); // tmax=0 to check for update without blocking
 switch (errcode) {
 case BP2595_ERR_OK: DisplayStatusUpdate(&status); break;
 case BP2595_ERR_TIMEOUT: printf("status unchanged\n"); break;
 default: printf("ERROR: %s\n", BP2595_ErrString(errcode));
 }
}

Example: Report status changes

void DisplayStatusUpdate(BP2595_STATUS *status)
{
 int e = status->StatusSystem.Events;
 int s = status->StatusSystem.Live;
 printf("events:\n");
//IF (THIS VALUE CHANGED) REPORT ASSOCIATED STATUS CHANGE ---------------------
 if (e & NOTIFY_SETPT) printf("setpoint = %d V\n", status->SetpointV);
 if (e & NOTIFY_HVEN) printf("hven = %s\n", (s & STATE_HVEN) ? "on" : "off");
 if (e & NOTIFY_REMOTE) printf("mode = %s\n", (s & STATE_REMOTE) ? "remote" : "local");
}

BP2595_ClearEventLog

int BP2595_ClearEventLog(int devaddr, u8 flags);

Arguments

devaddr – device address in the range 0 to 7.
flags – event flags to clear.

Description

This function clears a device's internal event log. See BP2595_GetStatusUpdate for an explanation of logged faults.

Thread safety

This function is thread safe.

6

Example: Clear logged faults

u8 flags = EVLOG_UVLO | EVLOG_OVERTEMP | EVLOG_COM_TOUT;
if (BP2595_ClearEventLog(0, flags) != BP2595_ERR_OK)
 printf("ERROR: %s\n", BP2595_ErrString(errcode));

 Communication watchdog

The device implements a communication watchdog timer which monitors the elapsed time between commands. The
watchdog is disabled by default upon device power-up or reset.

When enabled, the watchdog will timeout if it fails to receive a command within the maximum allowed time. When this
happens, the device will:

• Set the STATE_COM_TOUT status flag to indicate communication timeout.

• Set the STICKY_COM_TOUT event log flag.

• Transmit a status update to indicate the status change.

• Disable the HV supply (clear HVEN). The HV supply will remain disabled until the STICKY_COM_TOUT event log
flag is cleared. The client can clear this flag by calling BP2595_ClearEventLog.

The client must execute commands frequently enough to avoid a watchdog timeout. If there is no need to execute a
command other than to avoid watchdog timeout, it is recommended to call BP2595_KeepAlive.

BP2595_SetComWatchdog

int BP2595_SetComWatchdog(int devaddr, u16 interval);

Arguments

devaddr – device address in the range 0 to 7.

interval – maximum allowed time in milliseconds between commands; set to 0 to disable.

Description

This function configures a device's communication watchdog timer. The interval argument specifies the maximum time
allowed between consecutive client commands. Set interval to 0 (default upon power-up) to disable the watchdog.

Thread safety

This function is thread safe.

Example

int errcode = BP2595_SetComWatchdog(0, 250); // allow 0.25 seconds max between commands
if (errcode != BP2595_ERR_OK)
 printf("ERROR: %s\n", BP2595_ErrString(errcode));

BP2595_KeepAlive

int BP2595_KeepAlive(int devaddr);

Arguments

devaddr – device address in the range 0 to 7.

Description

This function sends a "no operation" command to a device. When the device's communication watchdog is enabled, this
function can be used to prevent watchdog timeouts if there are no other necessary communications.

Thread safety

This function is thread safe.

7

Example

int errcode = BP2595_KeepAlive(0); // "ping" device at address 0 to prevent watchdog timeout
if (errcode != BP2595_ERR_OK)
 printf("ERROR: %s\n", BP2595_ErrString(errcode));

 Meters

Meter updates

The client acquires meter data via automatically transmitted "meter update" messages. A device can be configured to
transmit meter data ("meter updates") to the client on a periodic schedule. The API buffers the most recently received meter
data and, if desired, will notify the client when new meter data arrives. This mechanism allows any strategy of single- or
multi-threaded meter monitoring:

• In event-driven applications, the client can wait for a meter update and be automatically notified when a meter
update arrives.

• In polled applications, the client can check for meter updates at any time and, if an update is available, receive the
new meter data.

BP2595_SetMeterInterval

int BP2595_SetMeterInterval(int devaddr, u16 interval);

Arguments

devaddr – device address in the range 0 to 7.
interval – update interval in milliseconds.

Description

This function enables or disables meter updates and controls the update rate. Upon device power up or reset, automatic
updates are disabled by default. The interval argument specifies the time between updates in milliseconds. Set interval
to a non-zero value to program the update rate and enable automatic updates (note: if updates are already enabled, this will
change the update rate "on-the-fly"). Set interval to zero to disable automatic updates.

Example

if (BP2595_SetMeterInterval(0, 200) != BP2595_ERR_OK) // send report every 200 milliseconds
 printf("ERROR: %s\n", BP2595_ErrString(errcode));

BP2595_GetMeterInterval

int BP2595_GetMeterInterval(int devaddr, u16 *interval);

Arguments

devaddr – device address in the range 0 to 7.
interval – buffer to receive meter update interval in milliseconds.

Description

This function returns the programmed meter update interval.

Thread safety

This function is thread safe.

Example

u16 interval;
if (BP2595_GetMeterInterval(0, &interval) == BP2595_ERR_OK)
 printf("meter update interval = %d ms\n", interval);
else
 printf("ERROR: %s\n", BP2595_ErrString(errcode));

8

BP2595_GetMeterUpdate

int BP2595_GetMeterUpdate(int devaddr, BP2595_METERS *meters, int tmax);

Arguments

devaddr – device address in the range 0 to 7.
meters – buffer to receive meter data.
tmax – maximum time to wait in milliseconds.

Description

This function waits for a meter update and returns the meter data. It will block the calling thread for up to tmax milliseconds
while waiting to receive a meter update. The received meter data is returned in meters. The contents of meters will change
only if the function executes normally (without error).

The returned meters information is the most recently received meter data. The previous meter data will be lost if a new
meter update arrives before the client reads the previous update.

Blocking behavior is controlled by tmax. In all cases, the function will return immediately if a meter update has already
been received. tmax may be set to any of these values:

• Zero. The function will execute normally if an update was received, otherwise it will return
BP2595_ERR_TIMEOUT.

• BP2595_INFINITE_WAIT. The function will block until an update is received and then execute normally. If another
thread closes the device while the function is blocking, the function will fail immediately and return
BP2595_ERR_DEVICE_CLOSED.

• A positive, non-zero time specified in milliseconds (e.g. 1500 = 1.5 seconds). The function will block until an
update is received or tmax milliseconds have elapsed. It will execute normally if an update is received, otherwise it
will fail and return BP2595_ERR_TIMEOUT. If another thread closes the device while the function is blocking, the
function will fail immediately and return BP2595_ERR_DEVICE_CLOSED.

Thread safety

This function is thread-safe, however multiple threads are not allowed to wait for meter updates at the same time. This
function will fail and return BP2595_ERR_RESOURCE_BUSY if it is currently being executed by another client thread for
the same device.

Example: Event-driven operation

void MeterMonitorThread(int *devaddr)
{
 BP2595_METER meters;
 while (BP2595_GetMeterUpdate(0, &meters, BP2595_INFINITE_WAIT) == BP2595_ERR_OK)
 printf("meters: %d V, %d uA \n", meters->outV, meters->outUA);
}

Example: Polled operation

void PollMeters(int *devaddr)
{
 BP2595_METER meters;
 int errcode = BP2595_GetMeterUpdate(devaddr, &meters, 0); // tmax=0 to check for update w/ noblocking
 if (errcode == BP2595_ERR_OK)
 printf("meters: %d V, %d uA \n", meters->outV, meters->outUA);
 else if (errcode == BP2595_ERR_TIMEOUT)
 printf("meters unchanged\n");
 else
 printf("ERROR: %s\n", BP2595_ErrString(errcode));
}

 HV control

In remote mode, the client controls the device's setpoint and HVEN by calling BP2595_ProgramSetpoint and
BP2595_ProgramHvEnable. When the device is operating in local mode, the client is not permitted to change the setpoint
or HVEN and any attempt to do so will have no effect on device control settings.

9

Bumpless setpoint transfer

The API implements bumpless setpoint transfer, meaning that the device's setpoint will not change when the device is
switched between local and remote modes.

Bumpy/bumpless HV enable transfer

HVEN transfers are bumpless when the device is switched from local to remote mode. However, when the device is
switched from remote to local mode, HVEN may suddenly change as a result of the mode change:

HVEN
prior to

mode change

Console
HV Enable

switch

Transfer
type

Effect on HVEN

Enabled
Off Bumpy HVEN becomes disabled upon switching to local mode.

On Bumpless No change: HVEN remains enabled.

Disabled

Off Bumpless No change: HVEN remains disabled.

On Bumpy
HVEN becomes enabled upon switching to local mode.

Note: This may cause high voltage to appear on the HV output.

BP2595_ProgramSetpoint

int BP2595_ProgramSetpoint(int devaddr, s32 volts);

Arguments

devaddr – device address in the range 0 to 7.
volts – desired output voltage in Volts.

Description

When the device is operating in remote mode, this function will program the output voltage setpoint. In local mode, this
function has no effect on the device and will return BP2595_ERR_MODE_LOCKOUT.

Upon successful execution of this command, the device will transmit a status update to indicate the setpoint has changed.
The output voltage will change to match the setpoint if all of the following conditions are met:

• HV is enabled.

• The HV load is not drawing excessive current.

• The device has no faults (undervoltage lockout, over-temperature, communication watchdog timeout).

Thread safety

This function is thread safe.

Example

if (BP2595_ProgramSetpoint(0, -30000) != BP2595_ERR_OK) // Change HV output to -30.0 kV
 printf("ERROR: %s\n", BP2595_ErrString(errcode));

BP2595_ProgramHvEnable

int BP2595_ProgramHvEnable(int devaddr, int enable);

Arguments

devaddr – device address in the range 0 to 7.
enable – 1 = set HVEN; 0 = clear HVEN.

10

Description

When the device is operating in remote mode, this function will enable or disable the HV supply by setting or clearing
HVEN. In local mode, this function has no effect on the device and will return BP2595_ERR_MODE_LOCKOUT.

Upon successful execution of this command, the device will transmit a status update to indicate HVEN has changed.

Thread safety

This function is thread safe.

Example

if (BP2595_ProgramHvEnable(0, 1) != BP2595_ERR_OK) // Enable HV output
 printf("ERROR: %s\n", BP2595_ErrString(errcode));

11

	Introduction
	Windows SDK

	Overview
	Terminology
	Data types
	Error codes
	Device address

	Admin functions
	Arguments
	Description
	Thread safety
	Example
	Description
	Thread safety
	Example
	Arguments
	Description
	Thread safety
	Example
	Arguments
	Description
	Thread safety
	Example

	Utility functions
	Arguments
	Description
	Thread safety
	Example
	Arguments
	Description
	Thread safety
	Example: Display API version
	Arguments
	Description
	Thread safety
	Example: Display device versions

	Status functions
	Device status
	Status updates
	Arguments
	Description
	Thread safety
	Example: Event-driven operation
	Example: Polled operation
	Example: Report status changes
	Arguments
	Description
	Thread safety
	Example: Clear logged faults

	Communication watchdog
	Arguments
	Description
	Thread safety
	Example
	Arguments
	Description
	Thread safety
	Example

	Meters
	Meter updates
	Arguments
	Description
	Example
	Arguments
	Description
	Thread safety
	Example
	Arguments
	Description
	Thread safety
	Example: Event-driven operation
	Example: Polled operation

	HV control
	Bumpless setpoint transfer
	Bumpy/bumpless HV enable transfer
	Arguments
	Description
	Thread safety
	Example
	Arguments
	Description
	Thread safety
	Example

